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PREFACE
This paper was borne in response to various claims made by both private firms and state agencies 
regarding the promise of shale gas as a cheap source of energy in South Africa. We undertook our 
own research and analysis on some of these claims. We have gone into far more detail than many 
reports have attempted by linking geology, environment, technology and financing. This report is 
the first edition as we will try to regularly update our analysis as our own knowledge grows. The 
issues we cover here are as comprehensive as we could be; hopefully we can set the basis for more 
work in this area in future.

Many of the claims made locally are based on the US experience. The majority of such claims reflect 
a lack of understanding both of the US experience and of the fact that for something to be replicable, 
the context has to be similar. As is already known, conclusions reached regarding the extraction of 
shale gas in the US have to be understood within the correct context and any extrapolations made 
must be adjusted for local conditions.  Much of what is said in the local media merely touches on 
the politics of the debate rather than exploring the technical and economic aspects in more detail. 
Our own need to understand the issues led to a multitude of literature reviews, conversations and 
analyses of the technical material in order to undertake a proper unpacking of the economics of 
shale gas in more detail. 

The publicity around the potential of shale gas in South Africa has focused primarily on the 
environmental and social implications. There has been comparatively little attention given to the 
critical assessment of whether or not hydraulic fracturing (fracking) would be commercially viable. 
The implied assumption (claimed by proponents of the oil and gas industry) is that vast amounts of 
money could be made by the oil and gas industry, landowners, local communities and government.  
The purported benefits of shale gas are largely based on what can be drawn from the US and Canadian 
experience.  We draw, though, the bulk of our analysis from the US experience. Opinions on these 
benefits are divided between different experts in the light of the large write-offs of assets and value 
experienced by the oil majors such as Shell and others. 

Given that the field of shale-gas economics is fairly new and that there is much room for growth in 
our understanding in South Africa, this paper attempts to summarise the core issues as they relate 
to the geology, the hydraulic fracturing technologies and the environmental factors  that drive the 
extraction of shale resources and shale gas in particular. The author is not an expert geologist nor 
shale-gas operator and has relied on various sources in his attempt to connect the dots between the 
various fields to make an early appraisal of the issues that are likely to influence shale gas extraction 
in South Africa. This paper at best represents a modest attempt at the synthesis of the prevailing 
knowledge.

This report is designed to frame the economic issues pertinent to shale gas in South Africa. While 
the model proposed for assessing the economics of shale gas has not been tested for South African 
conditions, it does provide some possible approaches that warrant consideration. The report 
provides some preliminary conclusions. Readers who are unfamiliar with the technical aspects of 
the subject can refer to the references for further explanations of some of the technical issues. We 
hope the reader will find this informative and be better equipped to participate in the ongoing debate 
and policy-making process for shale gas as a result. 
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GLOSSARY OF TERMS
Bcf - Billion Cubic Feet
       [1 billion cubic feet of gas can supply the cooking, heating and other household needs of  
           10-11000 homes for a year] 

CBM - Coal Bed Methane 

CNG - Compressed Natural Gas 

DCF - Discounted Cash Flow

DFW  - Dallas Fort Worth

EIA - Energy Information Administration

EUR - Estimated Ultimate Recovery 

F&D - Finding and Development

G&A - General and Administrative Costs

GIP - Gas in Place

GTL - Gas to Liquids

IDDRI - Institute for Sustainable Development and International Relations

IP - Initial Production 

IRR - Internal Rate of Return

LNG - Liquefied Natural Gas 

LOE - Lease Operating Expense 

LPG - Liquid Petroleum Gas 

Mcf - Thousand Cubic Feet

MPRDA  - Mineral and Petroleum Resources Development Act

NGL - Natural Gas Liquid

NGV - Natural Gas Vehicle

NOC - National Oil Companies

NPV - Net Present Values

OEM - Original Equipment Manufacturer 

SRV - Stimulated Reservoir Volume 

T&F - Transportation and Fractionation

TOC - Total Organic Carbon

USGS - US Geological Survey

VPP - Volumetric Production Payment

WACC - Weighted Average Cost of Capital
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1. INTRODUCTION
MAIN FINDINGS
•	 There is growing global interest in gas as a means of diversifying the energy mix.
•	 Gas demand is expected to double within the next two decades.
•	 Publicity around the potential of shale gas in South Africa has focused primarily on 

environmental and social implications with insufficient attention to the economics.
•	 Five key drivers influence economics and commercial viability of shale gas dealing with 

environmental externalities issues. 
•	 Initial South African shale-gas resource estimates are substantial but subject to great 

uncertainty and possible further revision.
•	 The economically recoverable reserve is yet to be determined.
•	 Exploration rights are still to be granted. 
•	 The economic proposition of shale gas holds relevance for the public sector and society at 

large. 
•	 The economic viability of shale gas could be assisted by the regulated domestic price of gas or 

international benchmark prices determined by the global market.
•	 Wellhead economics are key to the economic sustainability of shale-gas extraction. 

This paper seeks to reflect on a number of contending issues related to shale-gas development and 
economics in South Africa. This is WWF South Africa’s first high-level assessment of the issue.
 

1.1  GAS IN THE GLOBAL ENERGY MIX
Because many countries have used most of their coal reserves, gas is a serious consideration as a 

means to diversify energy supply. In addition, considerations of cost, environmental externalities 

and energy security would weigh heavily on the minds of energy planners. It is fair to say the world is 

certainly transitioning to a more diverse energy mix, though it is probably still too early to say which 

is going to be the dominant source in the future. Gas, though, will play an influential role.

Global use of coal is subject to increasing constraints and this is one of the reasons why gas is being 

looked at more seriously. World supply of gas is primarily from conventional sources. In the last 

decade, increased supplies of gas from unconventional sources have been forthcoming from shale 

gas, tight gas and coal bed methane (CBM) following the shale-gas boom in the US and exploitation 

of CBM sources in Australia. Unconventional sources of oil and gas are reliant on reasonable or high 

enough oil and gas prices to ensure economic viability. Interest in gas exploitation in South Africa 

follows growing interest globally. Gas demand is expected to double within the next two decades.

 
1.2  THE FIVE KEY DRIVERS OF SHALE-GAS ECONOMICS
Based on our current knowledge and assessment, we argue that shale-gas extraction has, at best, 

marginal economics and that its commercial success is largely dependent on five key drivers: 1) rate 

of technology learning and efficiencies, 2) good knowledge and understanding of the geology, 3) a 

high enough price for gas or oil and other incentives, 4) the timing and scaling of drilling intensity, 

and 5) the cost of mitigating the externalities for both the short and long-term. 
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All five of these drivers are at the core of the economic and financial viability of shale-gas production 

and, despite the hype, are sensitive to various conditions.  Whether or not one is in favour of fracking 

for shale gas, the drivers remain the cornerstone of the economics and any one of these factors can 

throw out the economic viability. 

It will be useful, in future, to compare the US experience with that of other countries and assess 

how these five factors exert an influence on the commercial viability of shale gas in these countries. 

As we will show later, some preliminary work in other countries – which we have yet to study  

extensively – shows that it can be difficult to make the economics work when you consider all 

the factors that have to be taken into account and the degree of inconsistency and variability in 

performance they can throw up. 

As far as externality costs are concerned, our primary focus will be on in-field or production 

externalities and reclamation costs. In other words, they will be confined to the development 

and production aspects of shale gas. Some externalities may be unknown in terms of their 

nature, frequency, risk characteristic and future mitigation costs. As our knowledge grows, such 

externalities will have to be factored into the production cost of shale gas. This report will not go 

into the draft regulations for hydraulic fracturing currently being developed by the Department of 

Mineral Resources. The Department of Mineral Resources has released draft technical regulations 

on oil and gas exploration and production, including shale gas and hydraulic fracturing. The draft 

regulations were gazetted on 15 October 2013. In addition, in August 2013, the Department of Water 

Affairs (DWA) declared fracking a controlled activity in terms of the National Water Act, requiring 

the approval of a water use license for this activity. Detailed regulations are still be developed and 

released for comment.

1.3  DEVELOPMENT OF SOUTH AFRICAN SHALE GAS
South African shale gas resource estimates are placed at around 485 trillion cubic feet (Tcf) while the 

economically recoverable reserve is yet to be determined. Exploration rights are still to be granted 

even though a government moratorium has been lifted. Exploration for shale gas in South Africa is 

only likely after drilling, water and minerals regulations have been finalised.

Much of our analysis has been dependent on knowledge and experience from the US. As a result, we 

do not know the true economic potential, the well head costs, nor whether the Karoo geology will 

yield any long term sustainable product. While the information gaps are significant, the domestic 

knowledge base is growing in leaps and bounds. 

1.4  IS A SHALE GAS INDUSTRY VIABLE IN SOUTH AFRICA?
We seek to address the question of whether wellhead prices will be competitive by constructing a 

base economic framework for how to assess the economics of wellhead costs, the implications on 

the pricing of shale gas for the domestic market, and the domestication and beneficiation from gas 

usage. We thereby develop a collage of potential environmental externalities and explore whether 

these can be mitigated by building these costs in the drilling and production phase of shale gas. We 

further consider long-term externalities where costs are difficult to predict but can be dealt with 

through various interventions. 
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While it is true that private developers should be left to decide the economic proposition of shale gas, 

extractives are not only about private investment and the associated risks to investors. 

They also hold relevance for the public sector and society at large. From the perspective of the public 

sector, an understanding of the economics of shale gas not only influences appropriate fiscal policies 

and regimes, but also helps to clarify whether the exploitation of the resource justifies other public 

spend and incentives to make shale-gas extraction a viable proposition. A more sober assessment of 

the resource potential is essential, not only to allow for a more robust debate, but also to inform the 

extent to which public funds should be allocated towards the development of the resource.

Secondly, the economic viability of the production cycle of shale gas could be determined by the 

regulated domestic price for gas. To arrive at such a price, the wellhead economics need to be 

understood and made transparent. These costs should be inclusive of environmental mitigation 

costs. At present there is an information asymmetry. Multinational corporations vying for  

shale-gas plays in South Africa enjoy an information and knowledge advantage that is already 

influencing not only the nature of the debate, but could in future influence the framing of fiscal 

policy and how environmental externalities are dealt with going forward. Asymmetries can only be 

resolved through better information and transparency.

Better understanding of the make up of welhead costs begins to level the knowledge playing field. 

Greater understanding of the issues enables different decision pathways to be thought through more 

carefully when considering whether to exploit a resource, the timing of the exploitation and the pace 

at which it should be exploited. 

A vast resource can be both a bane and a boon for the domestic economy. Beneficiation pathways 

are not only determined by gas prices, but also by the longevity of the production process and the 

size of the resource. The scale and thresholds of the externality impacts give a measure of the benefit 

and costs so that trade-offs can facilitate prudent choices while decisions are facilitated by sound 

grounding of the science and economics. In the end, those with a personal incentive to extract make 

their case on the promise of jobs and benefits to the economy. All claims in this regard must be 

properly evaluated1 as claims of jobs and benefits are meaningless in the absence of proper context 

to establish their veracity and the capacity to deliver these outcomes in reality.

We believe the wellhead economics are key to the economic sustainability of shale-gas extraction and 

the use of gas in the broader economy. We believe a grasp of this provides for a better assessment of 

downstream benefits and puts more realism to claims being made about economic spin-offs. The US 

example is used widely. These are the only shale-gas plays we can draw on for real life experience. 

The explosive growth in academic and grey literature only testifies to the hunger for understanding 

given that the commercial production of shale gas dates back to 20042. An understanding of the 

performance of the shale-gas industry is only growing as more experts analyse the experience in 

field. We draw on some of these experiences to pull lessons for South Africa. Our study is based on 

several interviews along with a review of academic and non-academic literature.
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2. A BRIEF HISTORY OF SHALE GAS IN THE US
 

MAIN FINDINGS
•	 The US shale-gas experience is not necessarily replicable elsewhere.
•	 In other countries, extraction has proven less economical than envisaged. 
•	 Recently, oil prices have plummeted putting mega projects at financial risk. 
•	 Several endowment factors have supported the rapid commercial development of shale-gas 

extraction in the USA.
•	 Technological improvements have been key, but geophysical characteristics may, in the end, 

defeat technogical breakthroughs. 

Drawing from the US is useful with the caveat that the US experience is, perhaps, unique and possibly 
not replicable elsewhere. It is a point repeatedly made by experts like Leonardo Maugeri3; a well-
known oil and gas expert in the US. Maugeri goes as far as to say the US shale-gas experience will 
stay in the US4. The proposition remains to be tested, but preliminary attempts in Mexico5, Poland 
and other European countries6, China7 8 and Australia9 are proving to be difficult10 and extraction 
has been found to be less economical than originally envisaged11. Maugeri’s thesis may still hold for 
a while. Others who have also examined US shale-gas plays are contesting the long-term economic 
viability12 of shale gas arguing there is more hype13 than is warranted by reality14 15. The debate on the 
longevity of shale gas is a contested issue and one which requires some clarity regarding different 
aspects of shale gas in order to properly appraise the various claims16. We provide some insight 
into these issues later in the report that no doubt will give a far clearer perspective than has been 
attempted for the South African context.

The exploration of unconventional reserves comes at a period in the oil and gas history when the 
majority of oil and gas reserves are owned by national oil companies (NOCs). The ‘seven-sisters’ 
(now the big five oil majors) have restricted access to and ownership of a substantial portion of 
the world’s conventional plays. Many of these conventional sources are low-cost fields. In order to 
ensure reserve replacements that are large enough to keep their businesses going they are scouring 
the earth for new reserves, primarily unconventional plays that have largely remained unprofitable 
as these are frontier petroleum activities characterised by high risk and significant technological 
challenges17. Unconventional sources and riskier oil and gas finds require good rates of return from 
high gas and oil prices to make the economics work. Recently, oil prices have plummeted by 50% 
from historic highs. This puts some of the trillion dollars worth of mega projects at financial risk as 
many projects were planned when oil prices were around $100/barrel. Frontier petroleum and gas 
exploitation implies higher capital cost with lower rates of reserve replacement compared to the 
historical trends that were possible with easier and lower cost oil and gas finds18.

In the US, frontier petroleum reserves became the only real option after geologist M.K. Hubbert 
convincingly showed that the US conventional reserves of oil and gas would peak in the 1970s19.  This 
opened the space for new players as the majors vacated the US. Medium-size firms or oil and gas 
minors were less risk averse.  Desperation became the mother of innovation and this, combined with 
operational flexibility to experiment, helped unlock the potential of shale gas. George Mitchell, the 
early pioneer of hydraulic fracturing, was desperate for new sources of oil and gas to ensure continuity 
of supply for his company, Mitchell Energy20. Mitchell invested over a quarter billion dollars in the 
development of the Barnett Shale from 1981 to 1997 to unlock its shale hydrocarbon reserves21. 
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Mitchell was able to take advantage of existing geological knowledge from conventional plays to 
exploit hydrocarbons from sources beneath these conventional fields. The early exploratory work by 
Mitchell was able to capitalise on favourable geology and sound knowledge.22

There are several in-country endowment factors that have supported the rapid commercial 
development of shale-gas extraction in the USA in the context of an already well-developed and 
mature oil and gas industry23:

1.	 Technological innovation and learning spill-overs are a product of US entrepreneurs and were 
largely developed by minors who were willing to take some big bets and conduct rapid in-field 
innovations. Once these were accomplished, the spread of knowledge and innovation was rapid 
due to the geographic proximity of players in the industry;

2.	 The US has a well-developed oil and gas industry with certain long settled capabilities, specialised 
drilling, well-engineering and, to a great degree, a good knowledge of the geology and resource 
base; 

3.	 The dominant service and original equipment manufacturing (OEMs) companies, just to 
mention a few, are Halliburton, KBR, Schlumberger and Baker-Hughes. The ability to secure 
cheap commoditised services and equipment is crucial to the commercial development of  
shale-gas;

4.	 The mineral rights are in the ownership of private land holders, unlike other countries where 
land is owned by the State. Land owners themselves may be desperate for extra income 
sources, particularly in farming areas, and readily sign up to leases or other types of land-deals. 
Private ownership has allowed large acreage across various US plays to be brought rapidly into 
production;

5.	 The US has an extensive pipeline and gas storage infrastructure in many of the plays, this 
includes midstream and downstream parts of the gas value chain;

6.	 The US has a well-developed gas use market in which wellhead gas prices are deregulated at 
the producers’ end through the Henry Hub24 (which has its advantages25 and disadvantages26) 
allowing for easy clearance of gas and trade in gas;

7.	 The majority of horizontal drilling rigs in the US are concentrated in shale plays;
8.	 The US has a well-developed financial sector which is used to dealing with the oil and gas 

industry. A number of financial products and innovations cater for various financial needs of 
the oil and gas industry in different parts of the value chain.

Maugeri and others argue that the absence of these endowments in other countries interested in shale 
exploitation will lead to higher cost structures in the full exploitation of shale gas or oil resources 
as established endowments lower the cost of frontier oil and gas reserves exploitation if they are 
simply an extension of the existing system27. Countries that take a strategic view on long term energy 
security may not judge the investment in shale gas on pure commercial terms and returns, but also 
in terms of sovereign risk and energy independence. China is the most likely candidate for such a 
policy position and could, in the long term, exploit its shale-gas reserves even though it struggles to 
do so at present.
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3. SHALE-GAS GEOLOGY AND THE ROLE OF WATER 
 

MAIN FINDINGS
•	 Early formation of gas and oil occurs within layers of impermeable and laminated shale rock.
•	 Shale gas is termed an unconventional resource in reference to the methods required to extract 

it.
•	 Thermogenesis yields various by-products from the conversion of organic material.
•	 Shale-play sites that contain high total organic content are likely to produce high yields of oil 

and gas. 
•	 Wellhead design and fracturing is both a science and an art. 
•	 Water has proven to be the best medium for frack fluid chemistry.
•	 The use of fresh water in hydraulic fracturing may compete with other uses.
•	 Recycling and reuse of water depends on the chemical composition of water as the removal of 

these determine cost of treatment. 
•	 The danger of ground water contamination exists and can be mitigated through the creation 

of buffer zones or by restricting drilling in sensitive areas. 

3.1  THE ORIGIN OF SHALE GAS
Perhaps the best way to describe the geology of shale is by way of reference to its place of origin 
through geological time as the source rock for oil and gas. The early formation of gas and oil takes 
place within these compacted layers of impermeable and laminated shale rock. As one expert puts 
it more technically, shale is “made of up of clay size weathering debris, shale formations are fine-
grained, laminated clastic sedimentary rocks that are soft and fissile. Typically, they have a thickness 
of 50-600 ft, porosities between 2-8%, permeabilities 10-100 nano darcy28, organic content of 1-14%. 
They are encountered at depths ranging from 1000-13000 feet”29. In other words, the rock is so 
compact with pore sizes so small that trapped gas would only be able to escape by fracturing the 
rock.

Millions of years ago, large masses of organic material (whether plant, woody mass, marine life, 
animals or algae) were buried deep within the earth’s surface. This organic material was compacted 
and subjected to various stresses – mainly heat and pressure. Figure 1 depicts the distinction between 
conventional and unconventional sources. 

3.2  CONVENTIONAL VERSUS UNCONVENTIONAL RESERVES
Oil and gas seep from the source rock and move towards the surface until they pool and get trapped 
by other types of impermeable rock barriers, such as salt domes which then act as a natural seal and 
result in a reservoir which is usually closer to the surface and easily accessed. This is the source for 
conventional reserves of oil and gas.

Unlike conventional pools of oil and natural gas, unconventional oil and natural gas are far more 
difficult to extract. The term “unconventional” simply refers to the methods that are used to access 
these resources, as well as the types of rock from which the oil and natural gas are produced.
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Figure 1: Depiction of conventional and unconventional oil and gas resources30

 Source: Rodgers, Wyoming State Geological Survey, 2014

3.3  THERMOGENESIS
Given that this material is buried deep within the earth’s surface, the organic material is subject 
to intense heat and undergoes thermogenesis. The pictorial representation in Figure 2 depicts the 
variation of oil and gas phases or conversions as temperature gradients vary over time. 

The thermogenesis process yields different by-products from the conversion of the organic material, 
usually kerogen, into bitumen and then into heavy and light oil, wet gas and dry gas. Bacteria can also 
convert organic material into gas, but bacteriogenic gas is more likely to occur closer to the surface 
although there have been reports of bacteriogenic activity at much deeper geological formations. 
There is, nonetheless, a possibility of co-mingling between bacteriogenic and thermogenic gas if 
there are natural fractures that connect the two gas types over time – interconnecting deep sources 
with shallower sources of gas31. This potential for co-mingling relates to contamination issues and 
the identity of the origins of the gas when assigning liability which is  discussed later in the report. 
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Figure 2: The variation of oil and gas phases as temperature gradients vary over time 

Source: Ozgul, Texas A&M University, 2002

During the prospecting phase, potential shale play areas that contain high Total Organic Carbons 
(TOCs) are identified as likely to produce high yields of oil and gas. TOCs are indexed as holding viable 
yields if they range between 4-12% for optimal gas or oil extraction from shale. Table 1 differentiates 
between different TOC levels and the quality of the shale rock. If there is sufficient high quality TOC, 
the material is subjected to further chemical analysis through a process called pyrolysis32. 

Table 1: The relationship between TOC and kerogen quality33

TOTAL ORGANIC CONTENT 
WEIGHT% KEROGEN QUALITY

<05 Very Poor

05 to 1 Poor

1 to 2 Fair

2 to 4 Good

4 to 12 Very Good

>12 Excellent

Source: Shlumberger
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It is important to note that the presence of high TOC shale from early drilling results is not an 
indication of economically recoverable gas. It is merely a pointer of the potential for high gas-in-
place (GIP). TOCs can be tested for their oil-to-gas ratio windows based on the measured readings of 
vitrinite reflectance34 indicating their level of maturity. The Karoo is expected to have fully matured 
thermogenesis in the most promising areas. Although insufficient drilling has taken place to be 
definitive, the presence of doleritic intrusions and other features seems to support the assumption 
that the Karoo will primarily consist of dry-gas plays or the gas has been over-cooked and the gas 
expelled from the shale over time. In the US, various shale plays have pure oil, dry gas and/or wet 
gas35 windows (wet gas is a mixture of methane gas and heavier hydrocarbons like butane and 
propane). For instance, the Marcellus play, which is a vast resource, has both dry- and wet gas 
windows where the west is primarily wet gas and eastern sections of the Marcellus segments contain 
methane rich dry gas. 

In addition to the consideration of TOC and vitrinite readings, further determinations for successful 
gas extraction would include the minerology of the shale formation. In other words, what is the 
ability of the rock to fracture under high pressure and, in so doing, yield high gas or oil production 
rates. This depends on the levels of permeability that can be artificially created through fracking36. 
The key is to ensure a high degree of connectivity between natural and artificial fractures so that the 
permeability for gas transmission through the channels into gas outlets, such as the wellbore, can be 
improved37. Porosity is influenced by rock structure and the degree to which the shale rock is itself 
saturated with formation water38. High water saturation can impede permeability and gas flow39. 
Even after fracking, the pores and fractures should stay intact to allow for gas and oil to flow when 
production commences.

It seems that wellhead design and fracturing is both a science and an art. The mineral mix of the 
shale formation, the proportion of clay, silicate or carbonate and quartzite, will influence the type of 
frack technique and chemical mixture required. 

3.4  FRACK FLUIDS AND THE ROLE OF WATER
Fracking has to take place under high pressure with high volumes (to date) of frack fluids to succeed. 
Water has proven to be the best medium for frack fluid40 chemistry and its high volume low viscosity 
properties allow for various manipulations tailored in relation to its interaction with the rock to be 
fractured. While alternatives to water (such as Liquid Petroleum Gas (LPG) or concentrate and the 
use of enhanced carbon dioxide techniques) have had some application on a trial basis, mainly in 
Texas, such trials have not been at a commercial scale that would warrant commercial application 
at this point in time41. At present, a Canadian company is the only company that is developing LPG 
as an  alternative. If LPG gains wider use in this sense, special legislation would be necessary to 
deal with potential gas emissions and flammability issues as well as liability cover in the case of 
accidental explosions42.

Table 2. Illustrative fracturing phases43 in a typical shale-gas well44

Prepad Low-viscosity saline solution is pumped into the borehole to ensure rock formation 
is not damaged. The solution usually contains fluid loss prevention additives and 

surfactants45.

Pad A viscous fluid46 is pumped into the borehole under pressure to produce fractures.

Proppant Proppants are added to low viscosity fluids to keep fractures open which can 
otherwise close quickly under pressure.

Flush Use of fluids to clean out fracture fluid within fracked zones.

Source: Knudsen, University of Florida, 2012
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Water remains a cost-effective fluid and so most wells make use of water as the major medium for 
the creation of artificial fractures and well stimulation. Table 2 illustrates the shale gas fracking 
preparation phases. The viscosity of water47 can be modified using gels sourced from guar48, as a 
case in point, so that the higher viscosity facilitates the transport of high concentrations of proppant 
into the fractures where the artificial fractures have been created. This is usually applied under 
conditions where the shale rock brittleness factor is low and the clay content of the rock is high. The 
proppants, which can be sand or, in some cases, walnut shell resins (other types of materials such as 
ceramics are also being tested), enable the artificial fractures to be kept open after the cracks have 
been created. 

The issue of water is an important concern if water continues to be the preferred frack fluid49. 
The volume of water required depends on the nature of the frack that has to be performed. This 
could have material consequences in localised conditions where fresh water is used that could 
compete with other uses, although nationally the effects of water consumption for fracking are not 
significant50.  That said, South Africa is a water-stressed country, and so caution must be taken in 
terms of how we deal with water allocation for industries or activities that will, over time, require 
more water as more wells are drilled. The problem with the use of potable water is that invariably a 
quantity of it is permanently lost and what is returned as flowback and produced water (essentially 
fracking wastewater) is a mixture of the originally pumped fresh water (which is now contaminated) 
and formation water (water rich in brine from the targeted shale gas-rich rock). The amount of 
water that returns to the surface varies greatly across and even within shale plays, with most figures 
indicating that between 15-80%51 of the water is returned. Water that is not recycled or reused will 
incur an opportunity cost, especially in the local context where water may be in high demand. This 
is something which warrants a more detailed examination in future studies. It is necessary, in any 
case, to consider a total cost model for the acquisition of water in terms of transport, disposal, reuse/
recycle and the opportunity cost.  

Technical measures can be required to deal with shale-gas wastewater and should be standard 
practice with operators. The recycling of flowback and produced water or various types of brine52 
is one option, which is increasingly being used in the US53. Depending on the characteristics of 
the brine, processing technologies to treat it for reuse can be expensive54. Early essential work in 
considering the development of recycling is to investigate the various types of brines generated from 
shale-gas extraction, their chemical composition and the water treatment technologies required to 
treat water to acceptable levels for reuse or to be returned to the system.

In the US it has been cheaper to dispose of flowback water and produced water in injection wells, 
but the recycling and reuse of water is increasingly becoming an option due to economic reality (as 
it is costly to truck and dispose of water), political pressures and environmental concerns55. Reusing 
frack fluids will require new technology innovations56. If fracking happens in the Karoo, recycling 
and reuse of water would be the only option. The reuse of flowback or produced water depends on 
treatment options available for the given level and type of chemical contamination as, in order for 
its reuse to be feasible, the after-treatment quality has to be ideal for the various chemical mixtures 
that go into the fracking fluid. Experience has shown that fracking fluid chemistry is a combination 
of chemicals that involves a recipe for each different type of geophysical characteristic of shale rock 
and to create the capacity to carry the proppant down the borehole whilst reducing the friction felt 
in the borehole as the frack proceeds. 

The danger of ground water contamination depends on whether high standards are being adhered 
to for drilling of the borehole, installing the well-casings and cementing them in place. Minimising 
risk requires that best practice is followed when implementing standards to protect ground water 
and surface water resources.
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The possibility of contamination increases if shale wells are close to either natural fractures or 
ground water sources. This could possibly be mitigated through the creation of buffer zones or by 
restricting drilling to shale plays well below 1500m or a distance from ground water sources. In 
the Karoo, the creation of a buffer and well-spacing regime will most likely narrow the area of the 
resource base that can be exploited57. All of these factors will play a role in economics of shale gas 
drilling and development.

The key to unlocking the gas from shale is to make the impermeable geology yield to engineering and 
technology and this is where unconventional wells differ from conventional wells. Unconventional 
wells require far more effort to unlock as much of the GIP58 as possible as detailed in Table 3. 

Table 3: Summary of Some the Key Factors for Successful Fracking59 60

•	 Minimum GIP should be around three cubic metres/ton with water saturation lower than 40%;

•	 The GIP is also influenced by other factors: high temperature and low TOCs (2.9%)  will have 
minor contribution from adsorbed gas while low temperatures with high TOCs (5-6%) will have 
higher fracktion of adsorbed gas. In some cases of extremely high temperatures there have been 
wells with no adsorbed gas61; 

•	 Plays with higher adsorbed gas will have a flatter decline curve than plays with little adsorbed 
gas;

•	 The higher the pressure, the better the frack outcome;

•	 Brittle shale is more conducive to large volume, high rate water treatments in what is called  slick 
water use62;

•	 It is key to develop a complex network of fractures with high potential for gas flow63;

•	 Large treatment leads to large fractures64;

•	 Smaller proppant65 particles are preferable as they tend to go deeper into the fractures;

•	 Brittle shale is mostly fractured with water as water is the least viscous and less brittle shale 
is fracked with high-viscosity fluids which have higher concentrations of polymer and gelling 
agents which enable them to carry the proppant66 to the fracture zones;

•	 A Brittle Index67 of more than 40% is desirable. By way of example, it was found that the Barnett 
Shale was more brittle when it was rich in silica and low in clay68;

•	 Permeability for shale rock, because it is so fine grained and compact, is measured in milli- and 
nano-Darcy ranges69;

•	 Pressure gradients of 0.5 Psi and above are ideal for high success rates in the creation of 
fractures;

•	 Temperature and pressures change as fluids or gases are brought to the surface;

•	 The quality of the oil and gas is also important as they may contain many impurities such as 
nitrogen, carbon dioxide and hydrogen sulphide which will have to be removed and so add to the 
cost of extraction.
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4. THE ECONOMICS OF SHALE GAS
 

MAIN FINDINGS
•	 The economics depend on how much gas can actually be recovered versus gas-in-place 

estimates against sunk capital cost. 
•	 Total recovery depends on technology, well design, fracture creation and geology. 
•	 Shale decline curves depict high decline rates in the first two to three years of production 

followed by leveling off. 
•	 Initial production (IP) and decline rates determine economic limit and profitability.
•	 Deriving realistic production figures and economic limits is encumbered by limited drilling 

history and production data. 
•	 The industry tendency is to give optimistic expectations.
•	 Only after an extended drilling and completion programme can the true potential of the  

shale-gas play be determined. 
•	 Shale-gas wells are high cost, low producing wells that require drilling in large numbers to 

commoditise the gas. 

4.1  RECOVERY AND LEARNING 
The economics of shale-gas extraction is also dependent on how much gas can actually be recovered 
compared to the GIP estimates70. The total recovery rate is a function of the technology used, well 
design, fracture creation and geology. The importance of making mention of this is to illustrate 
that TOC levels are one part of the story, but the use of a combination of techniques and geological 
knowledge to create a successful well is a function of experience. Reserve estimates are based on 
methodologies that are able to assess the total Stimulated Reservoir Volume (SRV)71. Learning 
rate dynamics will influence not only technology application, but also the levels at which in-field 
discovery and production costs are reduced over time.

4.2  DECLINE RATES
In recent years, various experts have examined the data from producing wells in different US 
plays72 73. The general pattern of well production performance for shale-gas wells is now fairly well 
known74 75. In Figure 3, the decline curves depict high decline rates76 in the first two to three years of 
production77 and then each year levels off as more gas is extracted from completed wells78. However, 
these decline rates are much more aggressive than in conventional wells. Shale-gas wells differ from 
conventional wells in that the initial production decline is steep and then gradual as shown79 in 
Figure 3. This makes sense considering the geology of shale as described above. 

The curve (Figure 3) corresponds generally to the geophysical and pretrophysical characteristics of 
the wells when the gas production profile moves from free gas to adsorbed gas states. This is when 
production dominated by fractures moves to production dominated by the rock matrix. The volume 
of shale gas that can be produced over time for a specific well is defined as the Estimated Ultimate 
Recovery (EUR) which is usually measured in billion cubic feet (Bcf). Daily production estimates are 
given in million cubic feet (Mcf).
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4.3  METHODS FOR DECLINE RATES ANALYSIS
Shale-gas well IP and decline rates determine their economic limit and profitability. EUR estimations 
are important to both investors and regulators as they need to be given a view of future well behaviour 
which is as accurate as possible. Investors need to know they are not investing in unproductive wells 
or wells that will show lower revenue due to wrong or over-optimistic estimates. 

Shale-gas production estimates are usually calculated in an aggregate or field basis. Within the field, 
individual wells will have different production characteristics, with some wells producing more than 
others. In shale-gas economics, it is not a single well that matters, but rather the average volume of gas 
that can be produced by a group of wells. On average, field decline rates are lower than decline rates 
for individual wells. Field decline rates are dependent on:

•	 Decline rates of individual wells;
•	 Total number of wells in the field;
•	 Period of time over which older wells were added;
•	 Rate at which  new wells are added reduces as field production rates begin to decline80 as the 

already drilled wells age

The amount one can drill depends not only on the size of land that is available, but also on the ease 
with which the geology can be made to work, and the number of rigs that can be deployed. Field 
decline rates can accelerate if drilling rates are not kept up in what is sometimes referred to as the 
drilling treadmill. The more you drill, the more you have to lay out capital and each well, in turn, 
remains uncertain with respect to its EURs and initial production. 

Every well drilled is a lottery – it may produce a lucky draw, a poor draw or a dud draw meaning that 
shale-gas drilling and economics remain a continual challenge to the industry given the uncertainty 
of the production rates and life times of individual wells. More crucially, the more wells you have 
to drill at a faster pace, the greater the danger of accidental events, contamination from polluted 
water and methane leaks. Hence, vigilance has to be maintained when it comes to health, safety and 
environment standards.

Within a given play or field, wells are tiered based on their gas production EURs. The industry 
classification system for wells is arranged according to P10, P50, and P90 ranges. These are determined 
by estimating the gas production rates based on the estimated production decline curve for a well. P10 
wells are the most productive and long lasting and P90 wells are the least productive with shorter life-
spans. The tiering system also determines which wells will be exploited first depending on the price of 
gas. The combination of P10 and P50 wells will lead to a strategy which  optimises the production rates 
or average yield for the whole shale-gas play when gas prices are reasonable or high. The exploitation 
of ‘sweet-spots’ earlier in the field production schedule will tend to give higher earlier average 
production rates (measured in MCf/day), but as operators move to less productive  areas these wells 
will have lower IPs and overall lower production rates. Optimising early drilling of  ‘sweet-spots’ also 
increases cash-flow and working capital that allows for more wells to be drilled in a field in that poorer 
wells can be drilled later in the development of the field when gas prices are predicted to be higher. 
Production rates can be improved by opening newer wells with better learning, the optimisation of 
techniques and expanding the intensity of extraction by reaching a greater surface area.

The calculation of decline rates using mathematical formulae and geological assumptions can give 
real or exaggerated gas production. The determination of these values is far from a perfect science and 
the science of decline curve estimates for shale continues to improve led by industry’s need for better 
estimates and enabled by more wells with longer production histories that allow better analysis.
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4.4  APPLICATION OF THE ARPS FORMULA
Since 1945, the Arps formula81 has been used to calculate the amount of oil or gas that can be produced 
by a well and to predict when production will come to an end. In the past it has been used extensively 
in conventional plays and its application to shale plays is more recent82. The first commercial  
shale-gas wells were drilled in 2004 about 59 years after Arp first applied his formula to conventional 
wells83. Modifications to the equation are ongoing to ensure production estimates of shale plays prove 
more robust and accurate. There have been modifications to the Arps equation, {q=qi (1+ bDit)-1/b}84 

by Fetkovich85 to adjust for discrepancies in the Arp method curves86. In any case, deriving realistic 
production figures and economic limits for shale gas is encumbered by limited drilling history and 
production data. This can lead to overestimations for shale gas production.

There tends to be inconsistency in the approaches of different companies. Nonetheless, reserve 
estimates are regularly revised with a new view taken every 10 to 12 months as more data is available. 
There are attempts to create a uniform method of assessing the productivity and economic reserve of 
shale-gas wells. Decline curve analyses are dependent on production data and are useful for forecasting 
how long wells will last after desorption87 is fully exhausted. Alternative methods to the Arps formula 
include the use of the power law88 loss-ratio method that is thought to give far more accurate 
estimations of the EURs. The application of power law ratios89  have shown that initial estimations 
using traditional methods for decline curve analysis have to be adjusted down by 40-60%90. Further 
methods include the Stretched Exponential91 to allow for cumulative production estimates where 
production data is either available for less than a year or more than three years92. The technical details 
of these methods are not entirely relevant here, but are referenced in order to illustrate the fact that 
decline curve analysis involves methods that are still evolving and are more probabilistic in nature 
than exact figures93 94. Even so, decline curves form the basis of shale-gas economics which means that 
information is based on probabilistic estimations rather than hard and fast estimates. The room for 
error and bias in estimations cannot be ignored95. The more robust the scrutiny of estimates or claims, 
the more rigorous the approximation of the economics.

Various formulae aim to mathematically mimic or describe the relation between gas production 
and geophysical characteristics of shale rock or formations. The creation of fractures in the shale 
rock opens passageways in such a way that they are able to connect the fractures to the production 
tubing of the well. The cumulative volume of gas that can be extracted is largely determined by the 
degree to which both natural and artificial fractures create sufficient escape routes for the free gas and 
adsorbed gas96. The relative proportions of free and adsorbed gas as depicted in Figure 3 influence the 
characteristics and shape of the decline curve.

Figure 3: Conventional versus Unconventional Decline Curves 97
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Adsorbed gas is what exists in the rock matrix and flows at the tail end of the curve or well-life. Because 
it is attached to organic matter or clay, it is harder to extract as it requires depressurisation  to occur 
as part of a desorption process. As McGlade et al note: “Higher rates of production decline lead to a 
shorter production experience, it is difficult to know whether production will continue to decline at 
the same rate or whether the rate of decline will slow in the future”98. 

Initial Production (IP) normally varies for every well. The IP rate is a function of maximum (early) 
production rate per well after well completion, while the decline curve provides an estimate of how fast 
a well is depleted and how long it will last. Decline curves can be further adjusted based on estimates 
the engineer attaches to how much of the adsorbed gas can be released as a result of depressurisation. 

Significant amounts of gas can exist in an adsorbed state on the organic kerogen and clay depending on 
temperature and pressure (or the adsorption isotherm)99. The importance of maintaining a pressure 
gradient must not be underestimated as Kaiser notes: “A reservoir is pressurised because of its depth, 
trap characteristics, geologic properties, and other factors. When a well is drilled into a reservoir, the 
reservoir pressure is an important determinant of the potential flow rate. As oil (or gas) is produced, 
the reservoir pressure decreases, leading to a drop in driving force and oil production” 100. 

IP is crucial as it generates high initial revenue and determines whether the payback period is shorter 
or longer for each well that is drilled101. The key challenge in shale formations is the high variance of 
IP in unconventional plays. Break-even costs are heavily influenced by estimations of IP, the decline 
rate and the life-span to the economic limit of a well.

Imprecise knowledge and achieving an optimal frack method determine IP, as has been pointed out 
in Table 3, as the IP will also influence subsequent gas flow rate and EUR. EURs vary based on what 
characteristics decline curves take, as shown in Figures 4 and 5, whether they are exponential or 
hyperbolic during the IP and tail-end phase for shale-gas wells.

Figure 4: Examples of production decline curves for shale gas102 
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Adjustments to the hyperbolic curve, as depicted in Figure 5, can be made on the basis of the assignation 
of a b factor. If the company believes it can extract more gas from its own estimated recovery rate from 
a total resource defined by the GIP, it can adjust the b factor to be higher than its  conservative estimate 
of 0.99. (Figure 5 shows only b factors from 0.1-0.99 but they can be greater than this). High optimism 
earns a higher b factor where b is greater than 1. This has been the general industry tendency103. 
Adjustments to a general hyperbolic curve are made to match the well’s existing production history. 
However, due to imperfect predictive ability of what the combination of technical efforts and physical 
resources can yield in the future, prudent operators err on the conservative side. B factors104 greater 
than 1 will have a higher EUR and b factors less than 1 a lower EUR as shown in Figure 5 for b factors 
of 0.99, 0.5 and 0.01105. Production data from early producing wells to later producing wells – this 
exercise of history matching – are important empirical information in the way b factors are determined.

Figure 5: Depiction of b curve adjustments in relation to a classic hyperbolic curve 
shape106
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From 2009 to 2011 the Energy Information Administration (EIA) estimated that the total volume of 
recoverable gas for the US would more than triple. These figures had to be revised downward by 46% 
in 2012109.

The potential exists for wells to be refracked in order to expand the economic limit and hence the EUR 
and life of the well. But this decision is dependent, amongst other things, on three things: 1) Whether 
the technical feasibility of refracking will justify the extra spending 2) the gas production rate of a 
well (refracking is likely to be more successful in wells that are ‘sweet-spots’ around P10), and 3) the 
price of gas (this should be high enough to sustain additional capital outlays). Expert opinions so far 
suggest that refracking at low gas prices is unlikely. It is better to drill fresh wells. However, future 
innovations may make refracking feasible for all types of wells110.

4.5  ASPECTS OF SHALE-GAS WELLS AFFECTING WELL ECONOMICS IN COMPARISON TO 
CONVENTIONAL WELLS

There are several features of shale-gas wells that make the economics of these wells different from 
conventional wells; we provide a summary of the key features:

1.	 The heterogeneity of the wells and uncertainty around production rates from shale rock formations 
always poses a challenge for the economics. 

2.	 Shale surface areas are wider and longer in nature while those of conventional wells are contained 
and usually secured by overlying impermeable rock, such as shales or salt barriers. To optimise 
recovery you need to  frack as much of the laterals.

3.	 Unlike conventional wells, the viability of a shale-gas well can only be determined after it has 
been fracked. The importance of this is that well completion can only take place after the reserve 
has been proved. Well costs are made up of two parts. Drilling costs make up 40 - 50%111 and the 
balance of costs are associated with stimulation, casing, cementing and final well completion112.

4.	 Given the characteristic of free and adsorbed gas behaviour in wells, not all the GIP is recoverable. 
Recovery rates vary per well from 10-30% based on estimates from literature surveys and expert 
views. Probabilistic methods have to be used to determine resource potential and in determining 
recovery factors113.

5.	 IPs also vary per well requiring that wells be classified into different tiers (according to their  
P ranges) in a field to derive average production rates per set of wells. It is for this reason that 
more wells have to be drilled for shale plays than conventional wells in the appraisal phase so that 
the full potential of the resources can be recognised. This helps to determine the pace of drilling 
and extraction in the development phase.

6.	 To maintain high average production rates per field, drilling intensity has to be ramped up and 
maintained over time. Ramping up models can be garnered from US experience and these can be 
set for different field conditions, IP, EURs and land size. Different scenarios are typically modelled 
for specific fields or shale-gas areas114.

7.	 For the large amount of shale-gas wells, the proportion of ‘sweet-spots’ are smaller in relation to 
other wells. In other words, for all the capital outlay, a smaller portion of wells will be in the P10 
range and the rest will be P50 or P90 wells. As a result, a smaller share of shale-gas wells are as 
productive as would typically be the case for conventional gas wells as depicted in Figure 6115.
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8.	 Fractures must remain intact and open during the production phase, but since gas extraction 
has to happen under highly pressurised conditions for successful recovery rates, this cannot 
always be guaranteed.

9.	 Horizontal wells tend to be fracked in multi-stages and the ability to drill successful longer laterals 
and perform a higher number of fracturing stages is improving, but this tends to increase costs.

10.	Unlike conventional wells, the economic viability of unconventional sources is determined not 
by a single well, but by the average performance of a set or group of wells within a given area and 
this can only be determined after a statistically significant number of wells have been drilled.

11.	 It is not uncommon for shale play estimates to be revised116 on a regular basis as more plays 
are drilled, fractured and more production history is available. So far all of these revisions have 
been “write-downs” which have tended to be quite dramatic not solely on the basis of reserve 
estimates but also future gas prices117.

12.	 Different basins depict different cost structures and so their profitability is variable. Early 
market entrants in US shale-gas plays would have had lower lease costs compared to latecomers, 
sometimes paying one-tenth of the lease price118 and so the later entrants would have had lower 
profit margins.

Figure 6: A comparison of the number of shale-gas wells required to produce the 
equivalent economic reserves as a conventional well
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In essence limited early drilling does not guarantee immediate economically viable reserves. Only 
after several drilling and completion results from a well-planned and executed appraisal programme 
can the true potential of the shale-gas play be determined. As Figure 6 shows, shale gas requires 
the drilling of far more wells in order to match the equivalent economic reserve of a conventional 
play. In shale gas, understanding results does not come from a few wells, but from the evaluation of 
multiple wells in a given area or field.

In summary, shale-gas wells are high-cost, low-producing wells compared to conventional wells 
and could be more so in new frontier areas with no prior experience in shale gas extraction or for 
conventional plays. The profitability of these wells is constrained as not all wells are high potential 
producing wells. The industry experience so far, based on the work of David Hughes119, shows that 
the percentage of high producing wells or ‘sweet-spots’ is far lower than medium and low producing 
wells. So in order to ensure profitability and sustainability of shale-gas plays, either costs must be 
reduced or gas prices must be increased (or a combination of these). The observation is that break-
even costs cannot be assumed to be the same across the entire field. The reality is that break-even 
costs vary within a single play or field per well. To add to this complexity is the variability of the 
initial production and the lifespan of the wells. All of this makes straightforward assumptions about 
the economics of shale-gas wells ambiguous and deserving of closer inspection.
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5. CONTEXT OF A WELLHEAD BASE COST MODEL
 

MAIN FINDINGS
•	 Base models can be used to analyse shale-gas prospects under various conditions. 
•	 The introduction of a shadow estimate could reduce financial risks. 
•	 Further research, development and technology innovation are necessary to reduce drilling, 

completion and production costs. 
•	 Learning rates are key in reducing costs. 
•	 Wellhead costs for the gas industry are influenced by development and construction costs as 

well as the fiscal and tax regime. 
•	 The five-year window is the most likely time-frame for optimal revenue streams and cost 

recoveries. 
•	 Wellhead costs guide the pricing of shale gas until it enters the domestic or international 

market. 

The base economic model idea is drawn from work by various academics in the US. It is designed 
to understand break-even costs in relation to gas prices. We propose a similar model for South 
Africa. Base models can be used to analyse shale-gas prospects under various conditions. The base 
model will have to take into account the various costs for different phases of well development 
and completion as identified in Table 5. The incorporation of environmental mitigation costs is an 
important feature in such a base model. The value of the base model will be in helping to develop 
greater clarity on a number of issues. Such a model would help provide:

•	 Tighter contextualisation of costs under South African conditions building on US experience;
•	 Greater understanding of the key variables which influence break-even costs;
•	 A useful gauge of likely trends in wellhead gas prices;
•	 A greater understanding of which royalty or carry free rates are most optimal in terms of the net-

effect from a fiscal regime that covers a variety of taxes, levies and incentives;
•	 A basis for understanding cashflow scenarios under different conditions for both wells and shale 

gas fields

5.1  BASE MODEL CONSIDERATIONS
Break-even costs120 can be determined using standard discounted cash-flow (DCF) analysis methods 
where internal rates of return (IRR)121 per well and net-present values (NPVs122)123 per well can be 
used to assess the economic viability of a well or a set of wells. IRRs that are higher than the weighted 
average cost of capital (WACC)124 and where the NPVs > 0 favour a project going ahead. In shale gas, 
the appraisal of a single well is insufficient. The entire field or play IRR and NPV would provide more 
material as we are concerned with a production regime that can be ramped up over time based on 
the level of confidence that the shale-gas play economics will be favourable. 

The important difference, in our view, is that IRRs and NPVs for shale-gas wells will have an initial 
shadow estimate and then a real estimate, unlike conventional wells. We believe the financial sector 
and investor world should introduce this innovation for shale-gas plays125. The shadow estimates are 
based on a sample of initial drills for a reasonably represented area that becomes the basis for initial 
capital raising provided to investors. We recommend that there also be a real estimate to ‘stress test’ 
the initial assumptions as IRRs and NPVs are likely to vary when well drilling is ramped up and 
there is wider well coverage in a given field. This would be better suited when more production data 
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and real-life production costs are available. In addition, in the US, real proven reserves are legally 
registered while the possible resources tend to be estimates thrown about at investor meetings and 
conferences which often paint a more promising picture than could be the reality126. The correctives 
proposed here will go a long way to ensuring tighter oversight is given over reserve estimates already 
in place, costs and profitability of shale gas wells and plays.

The proportion of debt/equity127 and favourable interest rates that a firm or borrower can secure 
based on their credit ratings and expected return on equity are two factors that would influence the 
WACC. Some preliminary academic work paints a picture of some gas companies showing financial 
strain and underperformance along a number of indicators including128: 1) retained earnings 2) the 
amount of working capital129 3) total shareholder return and 4) margin analysis. This reinforces 
the view, perhaps, that shale gas is a marginal play and would require a high gas price or other 
incentives to improve the attractiveness of extraction130. The effect of low prices131 is that drilling 
intensity has to increase, and so capex spend to meet not only land royalty obligations but also 
futures contracts132 through Volumetric Production Payments133 (VPPs)134 135 increases pressure for 
producers136. This is at least the case in the US, but will mostly likely take on different structural and 
financial characteristics in other countries.

Several studies now show that cash-flows are in negative territory, especially for dry-gas plays 137 

138. The main findings are that companies have to drill far more to meet cash-flow targets and so 
capex costs139 are exceeding initial modest expectations and drilling intensity, in turn, drives more 
production, further depressing prices as US gas demand has not kept up with supply140 141. It is what 
one would call a vicious rather than virtuous cycle. In the last two years, there have been significant 
impairments in the balance sheets for US companies and the majors, for instance Shell has had to 
write down its shale-gas assets in the US142. These trends can be understood through some of the 
main challenges of shale-gas extraction detailed in section 8.

Table 4: Well drilling and completion phase

Since shale geology can be challenging, considerable research and development and technology 
innovation are necessary to bring down the production costs. These technological improvements 
would need to facilitate the identification of ‘sweet-spots’  earlier on so drilling could be optimised to be 
more targeted. This should lead to simultaneous improvements in recovery rates with more efficient 
application of technology and well design engineering144. Figure 7 provides a useful description of 
time, technology evolution and recovery rates. If technology and knowledge progresses, the recovery 
rates for estimated GIP increase with time with the economic recovery rate being a result of enhanced 
technology and hydrocarbon prices145. 

Phase 1 Mineral leasing/acquisition and permitting

Phase 2 Site construction
Phase 3 Drilling
Phase 4 Hydraulic fracturing
Phase 5 Completion
Phase 6 Production
Phase 7 Workovers143

Phase 8 Plugging and abandonment / reclamation

Source: Adapted from Katz, University of Pittsburgh, 2011
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5.2  THE IMPORTANCE OF TECHNOLOGY LEARNING RATES
Technology learning rates and innovation sharing uptake rates by other operators have been shown to 
bring costs down and are expected do so further in the future146. These learning rates and innovations 
involve the optimal spacing of drilling (this can only be achieved with good knowledge of geology 
and mapping techniques); the replacement of single-pad drill rigs with multi-well drilling147 148 which 
has led to improvements in drilling time and the number of wells that can be drilled; improvements 
in well design engineering with growing experience; and in-field innovation allowing more free and 
adsorbed gas to be stimulated and recovered. 

Learning rates will be especially important in the early phases of South Africa’s shale-gas development, 
because of the limited experience with drilling in the country. As a result, the early production costs 
are expected to be higher. The extent to which we can learn, apply the technology and understand 
the influence of the geology more efficiently to ensure a positive learning rate is uncertain. Those 
learning rate effects are crucial in optimising the economics of shale gas. If these learning rates do 
not appear early enough the sentiment toward shale gas will likely be more negative as seen in China, 
Poland and other countries where fracking has been attempted. Most of South Africa’s learning rates 
are likely to come from application of technology such as the operation of the rigs, the extraction of 
gas and in the use of fracking methods.

Learning rate effects can be displaced by other variables or structural issues within the oil and gas 
economies such as the market advantage that OEMs can exercise over equipment or service pricing. 
There have been some concerns raised in the US media regarding market advantage problems149. 

Market advantage on specific critical equipment is likely to lead to overpricing. This is more likely 
if few companies own and produce critical technologies like rigs, certain gas separation equipment, 
water treatment technologies, and intellectual property over certain processes or applications just 
as illustrative examples. If shale gas expands to other countries, US OEMs and other related service 
industries will be major beneficiaries, not only because of proprietary information, but also the 
advantage of know-how that comes with years of practice and tacit knowledge.

5.3  FINANCING OF SHALE GAS AND PROSPECTS FOR SOUTH AFRICA
Other factors that could influence shale viability is how upstream, midstream and downstream  
operations and gas infrastructure are funded. It is not entirely clear what portion of investment would 
be driven by the state and what portion will be driven by the private sector. Upstream exploration 
and development is expected to be taken on risk by private oil and gas corporations.  Exchange rate 
volatility and sovereign credit ratings150 (which influences the cost of capital) would be important 
factors weighing on the financing and economic dynamics of shale-gas production151. However, the 
credit ratings of private firms is a separate matter and their cost of capital would be influenced by 
their own balance sheet and value of assets. It is anticipated that most critical skills and equipment 
for drilling will have to be imported. South Africa has no drill rigs152. The country has no specialised 
engineers with experience in shale-gas well design and, as pointed out, successful fracks require 
experience, good knowledge of the shale-gas play and a degree of design skill.
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Figure 7: Relationship between knowledge, technology and economic recovery of gas 

Volumes of different 
types of resources over 
time.  Technological 
breaktroughs 
periodically increase the 
technically recoverable 
resources.  Estimates 
of gas in place remain 
relatively constant, 
but uncertainties (gray 
shaded area) decrease 
with time. 

Source: Ray Boswell, National Energy Technology Laboratory, from Boswell and Collett (2011).  Reproduced 

by permission of The Royal Society of Chemistry.

Existing analysis shows that technology performance and innovation will most likely improve, but 
the degree to which such improvements will drive costs down is unclear. Some of these technology 
innovations involve TOC estimations using new geochemistry tools, developments in flexible 
geo-steering of horizontal wells, real-time temperature and pressure monitoring, knowledge of 
rock behaviour and the ability to innovate while on the job (what is called the ‘living laboratory’ 
approach) 153. Elsewhere, shale-gas plays have also been described as technology plays because they 
require not only good drilling rigs and fracture operating experience, but also understanding of the 
geology154. Innovation though is more efficient and impactful in settings where there is a critical 
mass of productive activity and complementary services. They have been shown in North America  
to mutually reinforce learning rates, collective innovation and spill-over effects.

Since 2000, learning rates155 have grown significantly. Average drilling experience in shale is now 
around 100-120 wells per firm in the US. Learning rates improved well productivity. A study on the 
Bakken play in North Dakota showed that fracked wells in 2011 were 34% more productive than 
wells fracked in 2005156. In the initial phase some profits are sacrificed if the pay-off involves higher 
learning rates and profits in the future157. Outside of the US, learning rates have been low. In China, 
average drilling time is about 11 months compared to the fastest drilling pace in the US in Marcellus 
that averages 18-25 days158 and in some cases even as short as 11 days159.

That said, these benefits can be off-set if drilling costs increase, if gas prices are too low and if the 
rate of drilling creates a surge in demand on goods and services where costs increase as a result, 
especially if equipment supply and other services are dominated by a few service companies. 
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It is unknown what learning rates will look like in South Africa as fracking has not been tested under 
South African geological conditions and other non-geological factors. It is likely that during the 
exploration phase some of these learning rates will be tested or grounded. When new technologies 
are applied to new geographic conditions, learning rates will be slower.

The timing of the development and production phase of gas is important. If global demand for 
scarce skills, equipment and services is at peak, additional demand is likely to be inflated and would  
influence production costs. As a case in point, these factors are coming to bear with the global 
surge in gas production and the development of Liquefied Natural Gas (LNG) export terminals. 
LNG platform development costs have surged considerably160 with Australia seeing cost overruns161 
and labour strikes. Skilled labour enjoys a captive market162. This has particular relevance for South 
Africa if we are to import conventional gas from Mozambique in the future and consider developing 
the shale-gas industry in South Africa especially if it is destined for export.

Table 5: Typical cost items for wellheads

Source: Adapted from Khater, 2013 and Kaiser, 2010

5.4  THE MPRDA AND SOUTH AFRICA’S OIL AND GAS SECTOR
South Africa’s oil and gas industry falls under the Mineral and Petroleum Resources Development 
Act (MPRDA). This Act was largely designed for the mining sector and in the past amended to 
accommodate the inclusion of gas supply to Mossgas. However, the MPRDA is undergoing revision 
and it is likely that, given the potential for off-shore and on-shore oil and gas resource exploitation, 
a separate oil and gas legislation will have to be promulgated to provide further clarity to this type of 
extractive industry as the MPRDA is not appropriate as it stands. 

Profitability for the gas industry is not only influenced by development and construction costs, but 
also by the fiscal and tax regime. On the issue of royalties, which has been subject to some debate in 
South Africa with the release of the draft MPRDA Bill165, the state is looking to exercise a 20% free166 
carry portion with a potential participation share of 80% in the future. 

The impact of these numbers on the IRR and NPV of shale gas is not easy to determine. It is far more 
useful to ascertain their impacts in relative terms by comparing them with other variables such as 
gas production rates, break-even costs and the life of the well. Royalty and levy figures on their own 
do not mean much unless they are assessed in relation to other cost factors and variables. As Table 
5 seeks to demonstrate, various costs go into the make up of the cost of drilling. The sample above 
is useful for illustrative value and can be used to guide the development of an inventory of costs that 
should make up a base case model for South Africa.

CONSTRUCTION FINANCIAL
Finding and development (F&D) Lease and Operating Expense (LOE)163;

Transportation and fractionation costs (T&F)  
especially for Natural Gas Liquids (NGLs)

Royalties (13-27%)

Well spacing Interest

Pre-construction Depreciation allowances
Intangible drilling costs164 (labour, chemicals, 
fluids, etc) – no salvage value

Corporate taxes

Tangible drilling costs – has salvage value 
(costs are depreciated)
General and administrative costs (G&A)
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An additional factor to consider when determining commercial viability is the effect of net government 
take, arising out of a fiscal regime for oil and gas of a country in which a company operates. This 
would also influence the final IRR and NPV. Net government take is a reference to the suite of 
corporate taxes, royalties, waivers, levies, capital depreciation allowances and incentives (uplifts) 
that oil and gas companies can use to determine the commercial viability of their operations. We 
do not go into detail on this as it warrants a separate study or assessment when applying a base-
economic model for South African conditions. A separate study would be needed to understand the 
current state-of-play for the oil and gas industry under the existing fiscal regime or future evolving 
fiscal regime that is likely to be influenced by changes to the minerals and petroleum legislation and 
the recommendations of the Davis Tax Commission established by the South African government 
to review the current tax regime on a comprehensive basis. Nonetheless, various fiscal options and 
benefits already exist in South Africa and can be utilised by the oil and gas industry to determine 
appropriate   financial models for gas or oil extraction. 

5.5  ROYALTY RATES 
Given that much has been made of the proposed new royalty rates for the amended MPDRA, it is 
worth looking at such proposals in relation to trends elsewhere. As an aside, Australia has a royalty 
rate of 40% under its extended Petroleum Resource Rent Tax. This does not take into account 10% 
state taxes and an income tax of 30%167. Royalty rates in the US vary between 13-27% and can be 
higher. Many of these rates are not disclosed because they are viewed as commercial proprietary 
information. Royalty rates, as the Canadian example in Table 7 shows, are influenced by gas prices 
and production volumes. The higher the production rates and gas prices, the more the royalty. The 
Canadian example in the State of Quebec drawn from Khater’s thesis is designed to be a fairer model 
that is triangulated between volume, price and royalty threshold rates. What makes for an ideal 
royalty rate would perhaps be better gauged with more transparent production costs per well when 
the time comes.

5.6  FREE CARRY AND TAX WAIVERS IN SOUTH AFRICA
The industry inclination is always to argue for waivers and tax incentives to push up the IRR and 
reduce the break-even payback period. Higher gas rates with high gas prices make higher royalties 
absorbable. In any case, the much publicised free carry portion for oil and gas plays in South Africa 
suffers from insufficient detail regarding the enactment of the carry free portion or the participation 
portion. In the absence of details, these impacts can be low or high on the financial viability of shale 
gas depending on how other costs play out.  It is always crucial, in our view, that the exercise of a 
royalty regime or other levies is implemented at an optimal point of the well’s life-span during the 
IP period rather than later or at the the tail-end of the well’s life-span. 

Table 6: Illustrative example of cascading royalty scheme from Canada

500 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
3 5 5 5 5 8 11.4 14.8 18.2 21.6 25 25 25 25

4 5 5 6.1 9.5 13 16.4 19.8 23.2 26.6 30 30 30 30
5 5 7.7 11.1 14.5 18 21.4 24.8 28.2 31.6 35 35 35 35
6 9.2 12.7 16.1 19.5 23 26.4 29.8 33.2 35 35 35 35 35
7 11.7 15.2 18.6 22 25.5 28.9 32.3 35 35 35 35 35 35
8 14.2 17.7 21.1 24.5 28 31.4 34.8 35 35 35 35 35 35
9 16.7 20.2 23.6 27 30.5 33.9 35 35 35 35 35 35 35

10 19.2 22.7 26.1 29.5 33 35 35 35 35 35 35 35 35
11 21.2 24.7 28.1 31.5 35 35 35 35 35 35 35 35 35
12 23.2 26.7 30.1 33.5 35 35 35 35 35 35 35 35 35
13 25.2 28.7 32.1 35 35 35 35 35 35 35 35 35 35
14 27.2 30.7 34.1 35 35 35 35 35 35 35 35 35 35
15 29.2 32.7 35 35 35 35 35 35 35 35 35 35 35

Royalty Rate

Gas Volume

Gas  
Price

Source: Khater, 2013
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Given that shale-gas wells typically depict high initial decline rates, the largest volume of production 
and revenue stream would be seen in the early part of the IP window – during the first 15-24 months 
of production.  

More detailed understanding should inform the royalty and reclamation cost recovery threshold 
and strategy. Information asymmetries between state understanding of shale-gas economics and the 
knowledge that companies have of shale-gas well performance can undermine an optimum royalty 
scheme and the ability to recover other costs if risks or liabilities become the inheritance of public 
coffers. 

5.7  TIMING FOR OPTIMAL REVENUE STREAMS
Our view is that the five-year window168 is the most likely window for optimal revenue streams and 
cost recoveries in shale-gas plays based on current knowledge and understanding of the performance 
of shale-gas wells. Shale-gas wells may last longer, but current evidence suggests  that the first  
five-year estimates are critical for financial viability based on our examination of the literature and 
conversations with experts. 

5.8 SHALE-GAS PRICING
One of the challenges for both beneficiation and royalties is being able to get a reasonable handle on 
the financially viable gas price that sustains the longevity of shale gas plays and production rates. 
The wellhead costs guide the pricing of shale gas before it enters into the domestic or international 
market. Pricing should not only cover the cost, but must also enable private firms to earn a profit 
and support further investments. Pricing would ultimately determine the  viability of long term  
shale-gas extraction. The highest international benchmark prices generate the highest arbitrage 
between domestic break-even cost at the wellhead and the higher price margins that can be reached 
if you sell to the highest bidder on the price curve as shown in Figure 8. So, for instance, in Japan, if 
LNG prices are around $17/mcf169 and the wellhead price for South African gas is between $8-$10, 
the arbitrage, after adding shipping and other costs, could be in the range of $7-8/mcf. 

It is these very arbitrage ranges that are bolstering the push for LNG export approvals in the US. This 
is in light of the current low gas prices that the US is able to offer when compared to international 
LNG benchmark prices as a consequence of the gas-to-gas market at the Henry Hub terminal. 
These low prices are one of the reasons for the conversion of the Cheniere170 LNG import terminal 
into an export terminal following the shale-gas boom in the US171. LNG plants costs, in general, are 
escalating172 and the US could be a competitive exporter of LNG in the future as it has a lower cost 
structure than many new LNG plants173 that are being built and planned by other countries. 

The US shale gas plays also have other advantages as the nature of its shale-gas resource allows 
producers to take advantage of different shale-rock products and prices to produce different revenue 
streams. The variation in product range can be indexed according to their different markets and 
monetisation profiles in different petroleum sectors. Shale oil, for instance, would be priced at 
relevant crude prices, gas could be linked to different global LNG prices or regulated prices within 
the domestic economy and these, in turn, will determine the economic viability of different wells 
that are fracked. For instance, in the US, where gas prices are currently low, drilling and production 
has shifted to the wet gas and oil windows of shale plays because these products fetch higher market 
prices. However, dry gas is cheaper to produce than wet gas as extra surface equipment is required 
to separate gas from wet condensate174. The expansion of drilling in oil and wet gas windows has seen 
a growth in LPG production resulting in significant growth in LPG exports from the US175.
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5.9  SHALE-GAS PRICING IN THE SOUTH AFRICAN CONTEXT
In the future, LNG or piped gas from Mozambique176 could provide an index price for South Africa’s 
domestic gas prices177. But all of this remains uncertain and speculative.

Figure 8: Gas price movements

CAPEX

In any case, regulated domestic prices will most likely face policy and political pressure  for discounted 
pricing if the State’s strategy is to ensure high domestic energy security and levels of beneficiation. 
This has been seen in coal prices in South Africa, in the past, where dual prices existed side-by-side to 
ensure affordable coal prices for domestic use and price security179. Early market development of shale 
gas in South Africa may require discounted prices to boost demand and sustain production. 

The trade-offs in the price discounting process are most likely to be seen in the way royalty rates are set 
and the levying of environmental externality costs given the marginal nature of dry-gas plays in general. 
Royalty income is also predisposed to predictable production volumes and gas prices180. However, 
we are doubtful that domestic beneficiation will be high in the early phase of shale-gas production 
because of the lack of downstream infrastructure and other factors. There may well be higher levels of 
penentration later if there are reliably proven reserves and sufficient capacity to ramp up drilling rates.

5.10  SHALE-GAS BENEFICIATION 
The creation of beneficiation pathways take a long time. There has to be some certainty that the 
economic reserve is large and long-lasting enough to justify major commitments and public spend 
in relevant infrastructure to support a domestic market. While there may be good uptake of gas for 
industrial purposes, cooking and other uses that may not require large investments in pipeline or other 
infrastructure which add to the costs of domestic gas use, most gas will be more conducive for exports. 
This is more likely because of the arbitrage value if break-even costs for wells are within a reasonable 
cost range and if the international LNG supply and demand remains as expected. 

In-field mobile LNG facilities already exist as prototypes, but cost barriers remain181 in deploying 
this technology at present. In the case of exports, gas prices will be dollarised as the dollar is the 
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predominant traded currency for gas and oil. Australia, which has significant gas reserves and is a 
major LNG exporter, is experiencing tensions due to the growing export of LNG into high price gas 
markets and the conflicting domestic demand for affordable gas supply182. 

Since there is no well-developed and sizeable domestic gas market in South Africa, the actual manner 
in which gas prices will be determined for new finds is something which has to evolve once shale-gas 
reserves are proven to be economically viable. This process of pricing and integration of this gas into a 
domestic or international market is commonly referred to as monetisation. Since monetisation involves 
an identification of a fair price, this would be largely dependent on the break-even cost for producing 
gas from shale-gas wells. The exact method for monetisation183 is still to be determined. One possible 
method, which is most likely in South Africa, for determining gas prices would be the introduction of 
regulated prices184 as there is no fully developed domestic gas market in South Africa that has multiple 
users on the scale we see in Europe and the US. This differs from the US market where prices are not 
regulated.185

The rand value of a regulated domestic gas price is dependent on the wellhead break-even costs, but 
these prices will not reflect other costs that arise as a result of storage, transmission and distribution 
of gas. There are, of course, many other costs which relate to the administration of the gas market186. 
A substantial oil and gas market that involves imports, off-shore and on-shore production would need 
to be assessed to justify the level of public infrastructure spend and optimal beneficiation.

The beneficiation from gas reserves is not automatic nor a consequence of finding and proving large 
reserves. It also depends on the political-economy187 that evolves around gas finds. Large reserves can 
well be the bane of a country as much as a boon because they can encourage rent-seeking, corruption 
and a kind of political entrepreneurship that not only distorts economic policy but also fiscal policies. 
There is easy continuity from the prevailing rent-seeking188 practices in other areas of the economy, like 
the extractives industry has so far experienced, into new types of economic activity if the governance 
system and political economy is not changed. 
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6. COSTS AND BENEFITS OF SHALE GAS  
IN SOUTH AFRICA
MAIN FINDINGS
•	 Well-designed economic and fiscal policies result in stronger opportunities for economic 

development and poverty alleviation. 
•	 Oil and gas rights should be put out for bid rather than on a first-come-first-served basis. 
•	 Oil and gas resource endowments do not easily translate into resource entitlements for citizens. 

Visions of a blissful outcome from the exploitation of new resources are not confirmed by common 
experience as wealth acquisition and distribution in South Africa not only reinforce past patterns in the 
minerals sector, but also continue to exclude many within the present. The promise that the exploitation 
of natural resources leads to automatic poverty alleviation and economic development remains 
unconvincing as many proponents know full well189 that these are influenced by the characteristics of the 
prevailing political-economy.

In the post-1994 period, South Africa’s per capita income grew significantly to push us from lower-
middle-income to upper-middle-income status. In 1994, the annual earnings per person averaged R12 
281. In 2013, that share grew by 401% to R62 676 per year – a compounded annual rise of 8.9% per year. 
Such statistics belie a different reality – South Africa is among the world’s most unequal societies with 
persistently high unemployment for the last twenty years.190 This mismatch points to other structural 
and systemic issues within South Africa’s political-economy that defines the nature of how wealth is 
distributed and used. Oil and gas wealth can relieve this as much as it can sustain this divide in wealth 
and income share.

If economic and fiscal policies are designed well, they can lead to stronger possibility of economic 
development and poverty alleviation. The prevailing setting of governance and the political-economy 
over a country’s natural resources is often a better indicator of where things can go than the mountain of 
rhetoric and platitudes announced along with the intention to open up new resources for exploitation so 
as to calm popular sentiment and build public support to serve vested interests. 

The fair distribution of oil and gas benefits requires sound economic policy and governance in order to 
properly allocate and invest any revenues generated from oil and gas receipts. Good governance supports 
strong national sovereignty over resource management and economic planning. 

An important issue that South African policy makers must grapple with is what type of fiscal model 
would work locally for shale gas specifically, but also for wider oil and gas exploitation if these prove to 
be realisable in future. We do not need to reinvent the wheel, but can draw from experiences and insights 
based on application of fiscal tools and policies 191 implemented elsewhere in the world.

The Norwegian model relies on what is called the ‘bird-in-hand’192 approach where national budgets are 
drawn193 or run into deficit ranges based on the overall returns from accumulated surplus from oil and 
gas sales that are managed as a pool fund194. 

The Norwegian and Chilean models are often cited, but there are more. Nonetheless, these are well-tested 
economic models that should be studied carefully. We will not delve into this deeply but economists such 
as Hotelling195 and Hartwick196 as well as Friedman’s Permanent Income Hypothesis197 provide useful
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economic theories to consider the fiscal policy design for optimal royalties, fees, levies or taxes that 
allow the state to build new endowments and capabilities from a depleting resource. All of these 
economic models are designed to create new wealth and preserve wealth as part of intergenerational 
equity strategies. These benefits, in turn, are dependent on the nature of the consumption of 
revenues based on whether investments are made in durable goods (capital spending) or non-
durable goods (current spending)198. Predictability of revenues from oil and gas proceeds would 
also determine the size of the deficit the government can carry on its books in order to ensure that 
spending towards social welfare and development is brought forward if revenues have high levels 
of certainty. 

Other countries have considered the creation of a Stability Fund199 to smooth the effects of 
commodity price cycles due to boom or bust periods. Stability Funds also act as useful buffers for 
managing currency risk and for managing boom and bust cycles that are often associated with the 
extractive industries.

These economic theories collectively suggest that the conversion of depleting resources into new 
types of assets should happen at the desired rates of substitute annuity income. In countries that 
have development backlogs, it is expected that some portion of the revenue stream will be used for 
consumption such as the spend on new infrastructure or the provision of other public goods, while 
the remainder will be invested. The rate of spend has to be aligned with reserve estimates, the 
pace at which the reserve will be extracted, and the present and future price for the resource. This 
may well be relevant for South Africa in the future as the combination of on-shore and off-shore 
reserves can boost fiscal coffers. Fiscal regimes allow for judicious management of revenue streams 
from the extractive industries by the government on behalf of its citizens. In the absence of such 
regimes, social benefits may be undermined, environmental externalities may not be dealt with and 
the development of the extractive industry can have adverse impacts, crowding out the potential 
and the development of other sectors of the economy, especially manufacturing, particularly if 
there is an influx of foreign currency. This is known as the ‘Dutch Disease’ syndrome200.

Since we do not know enough about South African conditions, it is hard to predict the ultimate 
economic reserve or the life-span of such a reserve for shale gas. All of these matter when considering 
what the royalty and environmental levy rates should be. They tell us, in effect, whether economic 
interests will trump social and environmental interests. Our considerations, as far as economic 
policy goes, do not only dwell on labour and capital as inputs of production but also on the use of 
the environment. 

The exploitation of resources should take into account damage, loss or other factors that 
compromise future use and benefit from environmental resources. These tend to be ignored, 
underestimated or simply used as a subsidy to bolster economic growth and production. 
Sound governance and fiscal regimes that tame the excesses of rent-seeking are more likely to 
accommodate proper environmental mitigation measures as well as social development objectives 
in areas where communities will be most affected by the extractive industries. Income uncertainty 
from shale plays can be a key characteristic of shale gas because of the different nature of shale-gas 
wells compared to conventional wells. This makes royalty estimates, other levies and investment 
of revenues a challenge in areas of the economy dependent on oil or gas revenues.    

Ideally, oil and gas rights should be put out for bid201 202. This is not a practice in South Africa as 
allocation of exploration rights has been done on a first-come-first-serve basis. Companies that 
value the resource most and have had proven track records in sound environmental practice should 
be preferred bidders. In general, oil and gas industries tend to generate surpluses depending on 
production costs and the global prices of oil and gas. These surpluses or super-profits are not a 
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result of effort, but rather of market conditions and national governments have a right to a part of 
these revenue streams. Experience with the development and exploitation of North Sea oil and gas 
provide useful examples of how Britain and Norway developed these reserves or frontier petroleum 
fields where the risks were high during the early prospecting and development phases. In the early 
phases, both the Norwegian and British governments avoided equity and operational participation. 
They had private companies take on the risk of establishing the new oil and gas fields. Fields that 
had high levels of certainty were put out for bids for exploration and production licences. Private 
companies, in turn, managed the risk by creating diverse consortia. As risks of proving the reserves 
declined, more state participation could be seen and in Norway it became mandatory.

Norway’s state participation took the form of ‘carried interest’ during the exploration phase. It allowed 
the state to exercise the option of holding a participation share in the development and production 
phase as well. In essence, the state carried none of the risk during exploration. As risks fell even 
further, both the UK and Norwegian governments increased their participation with Norway forming 
Statoil in 1972 and nationalising its resource base. At first Statoil operated as an investment arm of 
the state. Later it was entitled to a 50% carried interest in all new exploration blocks. Britain followed 
suit but did so more gradually. Norway’s Statoil became an active oil and gas operator holding the high 
potential blocks. However, Britain privatised its national oil company and Norway did not203. These 
different approaches and economic policy regimes have led to very different development pathways 
and beneficiation outcomes as we can see today.

Oil and gas resource endowments do not easily translate into resource entitlements for citizens. There 
is always the danger of capture of these rents by more politically connected and moneyed interests. 
The exploitation of natural resources also has costs and risks that can be apportioned unfavourably 
within a political-economy that has entitlement regimes which are exclusive by nature. The efficient 
capture of resource rents by the State can finance government expenditure when the development 
backlog in a country is acute. Some of these endowments and entitlements are not only in the form 
of social transfers, but also in ensuring that environmental and health risks are mitigated or proper 
provisions are made to deal with them in the long term. This is both a question of the design of the 
redistribution model, and also, critically, the governance and accountability over such expenditures.

The South African oil and gas plays, especially shale gas, currently suffer from a trust deficit. The 
credibility of accountability measures are not believable by the public given the widespread prevalence 
of corruption and political scandals that have been the focus of media attention in South Africa.

Paul Segal, in his examination of fiscal policy regimes in Mexico204, provides a useful framework for 
thinking through oil and gas rents and entitlements. Segal proposes205 that the measure of success of oil 
and gas policies, as far as the accruing of rents go from these resources, is not only the market income, 
but the degree to which citizen entitlements are enhanced and advanced through various forms of 
social expenditure during the life of the resource base.206 Entitlements themselves are conditional on 
oil revenues and therefore the decision to consume or save these revenues are important long term 
planning issues that the state must undertake. 

One of the glaring problems with Shell’s Econometrix study207 is that it shows market income and 
optimistic figures for jobs, but fails to really grapple with issues of inequality and redistribution under 
the current political-economy in South Africa208. It assumes entitlements are automatic and seamless 
between the exploitation of resources and the way revenues are appropriated and accrued within a 
given economy.
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7. TOWARDS A BASE  
ECONOMIC MODEL FOR SHALE GAS
Kaiser and Khater have developed a wellhead economic model that would not be difficult to apply 
under South African conditions. We propose a sensitivity model based on the outline in Table 7a 
and 7b drawn from the work of Kaiser 209 and Khater 210 and others. These sensitivity models can 
be used for different cost and revenue variables. They would, with time, be useful for South African 
conditions once we have better knowledge on what may prevail in the Karoo211. These cost and 
revenue details can be modified to suit local South African conditions. A cost map for South Africa 
can be created using the measures in Table 7. We provide a sample of cost items for illustrative 
purposes in this paper and so have left various values out. We include them here to demonstrate 
the profile the model should take by demonstrating the input variables on the right-hand side of 
Table 7a and Table 7b. This allows for the modelling of different cost and price scenarios to test the 
sensitivity of the wellhead costs under different production volumes and economic conditions. From 
such a model, the break-even cost can be estimated, this can be used to guide appropriate prices for 
shale gas, royalty rates and environmental levies that can be derived from a specific shale-gas field 
or well.

Presently, the application of a base economic model is limited in South Africa as there is insufficient 
data and exploration information. A great deal of work on the geology and other aspects of shale-gas 
development has yet to be done212. The target shale-gas formations are the carbonaceous shales of 
the Ecca and Dwyka Groups213. The Ecca groups have been shown to have the highest potential214 
for dry-gas production215. Early drilling was undertaken by Soekor between 1965-1975 where the 
state company of the Apartheid era explored for oil and gas in the Karoo. Soekor identified gas in 
tight shale formations of the Ecca Group at depths of 2500-4000 m. Soekor drilled 24 deep wells 
and this early work identified carbon-rich target zones principally in Whitehill216 and Collingham 
formations217. More bounded estimates for shale gas have been calculated in South Africa following 
the US Geological Survey (USGS) estimates. They have resulted in a  down-grading of the USGS 
estimates of 485 TCF. Tighter estimations place shale-gas resources estimations at between 40-
80 TCF for South Africa with the high potential areas in the Prince Albert Corridor and Whitehills 
Formation.

Table 7a: Well revenue streams

VARIABLE Code Unit P90 P50 P10

Initial Production Rate IP_rate Mmcf/d 0 0 0

Initial Decline Rate ID_rate % per year 0 0 0
Estimated Ultimate Recovery EUR bcf per year 0 0 0

VARIABLE Code Unit Low Average High

Capital Expenditures Cap_EX $million 0 0 0

Operational Expenditures Op_Ex $/mcf 0 0 0
Royalty Rate Disc_Rate % per year 0 0 0
Gas Price GP $/mcf 0 0 0
Discount Rate Disc_Rate % per year 0 0 0
Corporate Tax Rate Inc_Tax % per year 0 0 0

Wells Production Performance

Development ScenariosTable 7b: Well cost variables

Source:  Khater, Universite Laval Quebec, 2013
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8. THE ECONOMIC POTENTIAL AND 
ENVIRONMENTAL CHALLENGES FOR SOUTH AFRICA
 

MAIN FINDINGS
•	 Tighter environmental regulation costs are unavoidable to deal with short-term and long 

term risks. 
•	 Transparency of chemicals used for fracking is important. 
•	 The potential of seismic trigger effects are not well understood in South Africa. 
•	 Poorly designed reclamation provisions can prove to be insufficient to deal with externality 

costs. 
•	 The impact of a carbon tax must be considered.
•	 Economic value is dependent on economic beneficiation. 
•	 Job numbers are likely to peak from the development of shale-gas reserves to well completion 

and rapidly decline during the production phase. 
•	 Expectations of high direct jobs do not match reality and do not seem realisable in the future 

either but midstream and downstream secondary, tertiary and induced jobs have the potential 
to be high if  the resource is significant. 

Exploration applications cover an extensive 40 – 70% of South Africa’s surface area218. The economic 
reserve is still to be determined219. Some assessments paint a less optimistic picture for South African 
shale and CBM based on full cycle economics220. Model break-even prices221 have been estimated 
at US$11.93/mcf for shale and US$13.33/mcf for CBM222. Our own analysis of the literature and 
drawing from the perspectives of others suggest that even at $7/mcf, shale is uneconomical and prices 
will have to be higher for the gas drilling to be financially viable. We cannot discount observation 
from some geologists that much of the gas has already been burnt off223 or leaked due to doleritic 
intrusions224 225 in parts of the Karoo.

We have largely focused our analysis on upstream costs – in this case the wellhead costs and 
their economic dynamics as they pertain to shale gas. Further work needs to be done on various 
environmental costs226 like water treatment, ensuring proper methane capping227 reclamation costs 
for fractured sites after gas production, and road haulage damage228. There have also been studies on 
the life-cycle carbon footprint of shale gas. The Department of Environmental Affairs commissioned 
a study that shows that the carbon footprint is higher if the gas is exported when compared to using 
it for electricity and other purposes. The main reason being that domestic consumption displaces 
the use of coal229.

8.1  ENVIRONMENTAL COSTS
Environmental costs will be an important and significant cost variable as they have shown to 
increase in the US over time and as drilling expands to more densely populated areas. One estimate 
put tighter environmental regulation costs in the US at $500 000 per well230. We see these as 
unavoidable as mitigating environmental damage in the Karoo has to be a key condition for fracking. 
Appropriate mitigation will require good baseline studies for methane, brine and other chemicals to 
ensure traceabiity of source231 and identification of liability232. Transparency of the chemicals used 
for fracking would need to be part of the regulatory regime233. In the US, some states have a specific 
haulage levy or bonds so that costs associated with road damage can be recovered from shale-gas 
companies.
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The various measures have to be studied more closely as they are not an intrinsic part of this study at 
present. 

8.2  THE UNKNOWN IMPACTS OF SEISMICITY
Seismicity may also be an issue in what some geologists call trigger effects as the result of either 
well-injection of waste frack fluids (unlikely in South Africa)234 or a result of underlying structures 
impacted by shifting stresses235 236 due to the movement of rocks. Trigger effects of fracking are not yet 
well understood in South Africa because of lack of geological knowledge and insufficient measuring. 
Areas most prone to trigger effects could well exclude extraction and become no-go areas. In so doing, 
reducing the available land area for drilling. It will be a factor to consider when identifying potential 
areas and the long term viability of shale gas extraction.

8.3  ENVIRONMENTAL DAMAGE CLAIMS
The pursuit of environmental damage claims against multinationals is gaining growing interest 
in the light of a recent US ruling against BP for damages in the Gulf of Mexico as a result of the 
Deepwater Horizon blowout237. Special attention will have to be given to long term reclamation costs 
for abandoned or orphaned wells238. In the US, this is proving to be a cost that is increasingly having 
to be drawn down from existing state level budgets as adequate provisions have not always been made 
in the life of the oil and gas industry. The US oil and gas industry drilled a million wells or so over the 
last hundred years. Some cost estimates for reclamation already exist for Texas and Pennsylvania. The 
work done by Austin Mitchell239 a PhD student at the Carnegie Mellon University provides interesting 
insights on what is going on in the US and ways in which new innovations can be introduced in the 
design of future provisions for reclamation. His work involves financial models that ensure better cost-
recovery strategies tailored for unconventional oil and gas plays given our understanding of decline 
rates and other features associated with the performance of shale-gas wells.

8.4  RECLAMATION PROVISIONS
Reclamation provisions can be poorly managed or insufficient240 to deal with the true costs of 
externalities in the US. Mitchell suggests that in the case of shale gas, the full reclamation cost should 
be recovered within the first five years of the productive life of a well and these cost estimates should 
be revised on an annual basis. Provisions will have to be adjusted based on whether costs increase or 
decrease. Since shale-gas production estimates can be unpredictable, determination of revenues for 
environmental costs and royalties becomes a challenge. It seems, as a result, that the most optimum 
time to secure maximum revenue streams is during the early IP period just at the point of the curve 
where cash-flow peaks to where it ebbs and reaches its natural lowest limit as the economic limit 
reaches its tail-end – see Figure 9.

Figure 9: Cash-flow scenarios in relation to shale-gas decline curves

High cash-flow point

Low cash-flow point
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The possibility of formation brine and methane leakage241 also increases with time. Well barrier 
and integrity failures can happen during shale-gas production and long after wells are plugged and 
abandoned. Estimates vary as to the incidence of barrier and integrity failures from 1.9% to 75% 
based on publicly available datastats for different countries around the world242. If shale gas is drilled 
in South Africa, proper monitoring and data will have to be kept through the creation of reference 
wells. Mitchell points out that plugging costs can be high if the wellbore is of a poor quality. Access 
to wells is often restricted after abandonment because the land is privately owned. Well reclamation 
costs – involving the fracked site and the wellbore - can range between $60,000 - $100,000 USD per 
well based on estimates from Pennsylvania. The creation of provisions through trust or by forcing 
companies to hold bonds in an escrow account may incentivise compliance, but operators can go 
insolvent due to the fact that they operate in an industry that goes through boom and bust cycles243. 

Insolvencies and inadequate provisions can pose some challenge as the liability would then be 
transferred to a third party. The main challenge here is to align the separation of the production 
period to the stage when reclamation costs are incurred. This can be well into the future when nobody 
is really looking at the problem and liability costs anymore. Mitchell refers to more robust approaches 
employed by certain provinces in Canada using a Licensee Liability Rating Programme as a case in 
point. The Canadian approach is to proactively undertake a due diligence measure that tries to match 
liability creation with the capacity to offset the liability by a firm taking into account the asset base of 
the company. The Canadian example warrants further investigation.

8.5  CARBON TAX
In the South African case one may have to include potential cost or pricing of a carbon tax given 
that leaking methane is significantly more detrimental than carbon dioxide as a greenhouse gas244. 
The enaction of a carbon tax can also be viewed as a positive incentive because it may force better 
standards and compliance as far as well casing and sealing goes. The approach to provisioning may 
also incentivise good practice and high standards for well development before and after production 
when the wells need to be plugged. Austin Mitchell, notes: “The risks that annular pathways will 
develop increases over time as chemical, mechanical and thermal stresses causes deterioration of 
well structures and components”245. Failures246 are due to the natural deterioration of the cement247 

through the formation of cracks, corrosion of steel production casings, and valves that develop faults 
over time. 

8.6  WATER COSTS
Water248 will probably require much more detailed and focused attention in South Africa249 due to 
the sensitivity around availability and the use of the resource in sparse areas like the Karoo. Figure 
10 depicts the major challenges related to water. Localised impacts of water demand for fracking can 
be significant even though they are unlikely on water abstraction and availability on a national scale. 

Localised impacts can be seen in the way in which water use for the Barnett shale in Texas has been 
proven to be a significant drain on existing available resources250. Water volumes vary per frack and 
well types – averages can vary from 8000-16000 cubic metres of water per well251. 

There is growing literature on best practices for wastewater management from fracking. Some argue 
for the creation of wastewater reporting and tracking systems so that wastewater treatment responses 
can adapt to changing conditions for on-site waste treatment technologies252. We believe that water 
will be a pivotal issue for the economics of shale gas in South Africa, not only in terms of the cost of 
acquisition of water, depending on whether it is ground water or derived from other sources, but also 
in terms of the treatment regimes used to deal with recalcitrant toxic chemicals and other substances. 
We will be  doing a separate study on treatment regimes for water and their costs in the future.
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Figure 10: Classification of different water types, challenges and impacts from 
fracking

Source: US EPA, 2010
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8.7  SHALE-GAS BENEFICIATION PATHWAYS
The public discourse on shale gas can give the impression that shale gas will be cheap and that 
beneficiation pathways from the use of shale gas will be easy. This may be true or not at all. A lot 
depends on how we add up the costs involved for the full economic life cycle of shale gas. The general 
economic beneficiation pathway253 from shale gas is ultimately dependent on the wellhead costs. 
Wellhead prices will influence the extent of domestic market penetration as shale gas will have to 
compete with coal, renewables and other energy sources. Beneficiation pathways require long lead 
times as the development of domestic markets and infrastructure are key to the extent to which deep 
beneficiation will happen. South Africa has limited experience in the development of a gas market and 
infrastructure system. There is still much to consider. Feasability studies must be carried out on the 
long term trade-offs of putting in infrastructure against the need for certainty of the economic reserve 
that can be exploited at current and future prices.

There are several pathways to consider, but we think the core would include the uptake of gas in the 
electricity sector, gas for conversion into liquid fuels or the use of gas in natural gas vehicles, and 
compressed natural gas. Each of these pathways are feasible but will require further economic analysis. 
It is likely that gas consumption will be very quickly utilised in the chemical industry as a substitute 
feedstock in the production of fertilisers, ethylene, propylene and other products254.  Gas-to-liquids 
and gas-to-power have a strong probability of being the lead monetisation options in the first phase of 
the gas market development . The use of gas in the power sector depends on the gas price and whether 
it is dollarised or not.  South Africa has considerable experience, via SASOL, in the conversion of gas-
to-liquids (GTL) and GTL use could be a faster beneficiation pathway due to the country’s inherent 
capabilities255. It might prove easier to go the GTL route than converting cars to natural gas vehicles 
(NGVs) or users of compressed natural gas (CNG)256. SASOL is looking to establish itself as a major 
player in the gas market and wants to move away from coal as a primary feedstock257.
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8.8  THE IMPACT OF SHALE GAS ON SOUTH AFRICA’S GDP
As far as the effects of exploiting shale gas in South Africa on GDP go, this will depend on the size of 
the resource, the value of the resource and the pace of resource extraction. Domestic supply would 
offset foreign imports of oil and gas. These would have balance-of-payment benefits. But the depth of 
economic value is dependent on the depth of beneficiation, as we can already see for other extractives 
in South Africa. The higher the levels of beneficiation, the more secondary, tertiary and induced jobs 
will be created. The general impacts of shale gas on the US economy have been analysed elsewhere. 
Long term impacts from shale gas have been estimated to be around 0.84% of US GDP between 2012 
and 2035 258. The impacts are small in relation to the rest of the US’s sizeable economy. In the US there 
will also not be dramatic effects on manufacturing either, as is often implied, as the influence of cheap 
gas on industry and manufacturing is selective, mostly limited to industries switching fuel from coal or 
substituting for oil-indexed products like naptha259 for cheap gas in the fertiliser and plastics industry. 
The US is primarily a service-based economy. The service sector accounts for 83% of total employment 
– an increase in share from 60% since 1947260. For manufacturing to return to the US, other factors 
than gas price will play a role, such as corporate tax rates, labour costs and other variables.

Electricity markets are complicated as fuel costs are only a portion of the electricity price structure261. 
Other costs relate to transmission, distribution and taxes or levies.  A study by the Institute for Sustainable 
Development and International Relations (IDDRI) shows that no major GDP, manufacturing or 
electricity price effects are evident, while other studies suggest the opposite.262. It is unlikely that utilities 
will have a tendency to transfer these benefits to consumers if gas prices are low compared to other 
fuels. This is especially true in a country like South Africa where full cost recovery – through the tariff  
system – remains a challenge. The question of whether US gas prices will stay low in the next decade 
or more is debatable.

8.9 JOB CREATION POTENTIAL OF SHALE GAS
This report has not gone into the details of job numbers, but preliminary work shows that job numbers 
peak from the development of shale-gas reserves to the well completion period and rapidly decline 
during the production phase. Fracking is highly industrialised and a high skill industry. Expectations 
of high direct jobs do not match the reality of technology developments in the shale-gas industry at 
present and in the future. The levels of mechanisation and automation are high and are expected 
to increase as fracking technologies evolve. Available studies on job numbers can often be hard to 
disentangle as assumptions about direct, indirect and induced job numbers vary between studies263. 
These assumptions will influence how one reads the relevance of economic multiplier models used 
to determine job numbers in various studies. Some of these assumptions depend on total revenues 
generated264 and expectations of spend in a local economy265 266. 

More realistic numbers for jobs can be determined for direct jobs per well and ancillary services 
associated during the well production period like transportation, maintenance, wastewater 
management, hospitality etc. Other economic impacts include wage differentials between high-skilled 
and low-skilled workers, impacts on property prices267 and labour migration patterns of outsiders 
versus insiders (and the social consequences thereof) due to the transitory employment effects of 
extraction268. Nonetheless, most of the claims regarding the long term economic boost of the US 
economy from cheap shale gas need to be treated with some caution as a short-term boom may not be 
a sign of long term trends. There other structural issues in the US economy that will not be resolved 
by a transient shale-gas boom. The US, like Europe and Japan, is going through what is referred to 
as ‘secular stagnation’ following the 2008 financial crisis. Since oil and gas account for only a small 
portion of the US economy, broader economic prospects are dependent on demographics, debt levels, 
saving rate, education and innovation269. These structural issues are also relevant for South Africa. 
While energy costs play a role, it is worth stressing here that they are not the sole input costs that 
determine the level of economic activity and growth.
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9. CONCLUDING HIGH-LEVEL ASSESSMENT
Our findings are preliminary. Due to the lack of quality data for South Africa our assessment takes 
a more conservative view of shale-gas prospects. The assessment is not definitive as our reflections 
are based on what we understand from the US experience. In summary:

1.	 Shale gas, by definition, is a marginal resource as its exploitation is reliant on high gas or oil 
prices, generous or reasonable tax incentives and other factors, coming together in a seamless 
manner;

2.	 The idea that gas will be cheap mimicking US Henry Hub prices reflects a misunderstanding of 
gas monetisation in the US as this is not applicable to South Africa. Preliminary findings from 
drilling attempts in other countries have shown that extraction costs have been higher than 
anticipated;

3.	 Due to its inherently marginal economics, the incentive to export the gas will most likely be a 
greater probability under South African conditions as the arbitrage value to the highest paying 
market is the only economically viable option for shale-gas extraction if domestic gas prices 
cannot compete with export prices and other energy sources;

4.	 Export prospects of shale gas grow in South Africa if integration into the domestic economy and 
high levels of beneficiation are not forthcoming or have lead times which are too long; 

5.	 There is a possibility that if the economics of shale gas works out, shale gas could be a 
complementary component of an off-shore and regional  integrated gas market. On its own, 
shale gas is likely be a tough prospect because of other needs like pipelines, storage and other 
infrastructure;

6.	 The economic viability of shale-gas extraction is based on success rates of drilling and fracking 
techniques. Break-even margins are dependent on cost reductions in well development and 
completion, effectiveness and efficiency. The levels of cost-savings that can be achieved are 
uncertain;

7.	 Long term technology trends and learning rate improvements could shift the economics and 
make it more positive. However, there is a great deal of uncertainty regarding how these trends 
will affect the underlying economics if other standard cost variables are also changing;

8.	 The regulatory environment for South Africa – because of environmental externality issues 
and water security concerns – should be founded on the highest standards of best practice. In 
the Karoo, high environmental standards are necessary and government public justification to 
exploit a resource like shale has to be measured in terms of the various trade-offs discussed 
above. These include benefit to the fiscus, job creation, localisation potential, environmental 
impacts and the long term sustainability and resilience of the South African economy;

9.	 The balance of private versus public interest will influence the economic viability. The tension 
between these two contending and sometimes converging interests are not always easy to resolve  
or reach a consensus on;

10.	Water acquisition costs and the treatment of frack wastewater will add additional burdens to 
cost management. Water treatment is essential as frack fluids which contain formation water 
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will include harmful chemicals such as bromide, radium and arsenic that will have to be properly 
disposed of. These disposal costs are not well established at present and will be determined by the 
chemical composition of flowback water and the model and technology of the treatment regime 
that would have to be applied to safely dispose of wastewater;270

11.	 The reclamation provisions model and method of provisioning will be necessary not only to deal 
with rehabilitation of frack sites, but also long-term well failure and degradation. These tend to be 
liabilities that are transferred to the public long after production has been completed. Reclamation 
provisions, either through trusts or bond guarantees, will have to be closely studied and designed 
to accommodate the aftermath of fracking even though wells are closed and plug experience shows 
that well integrity and failures will happen.

Based on these preliminary assessments the commercial financial viability of shale gas will be 
challenging  and the success of gas extraction will depend on good knowledge of the geology, efficient 
application of the technology, the pricing of gas and ensuring sufficiently high standard of measures 
are taken to deal with both short-term and long term environmental impacts. The economics depends 
on how the five drivers we have identified above converge. They can well facilitate the economics of 
shale gas or prove to limit and hinder the success and commercial viability of fracking. In the interim 
the conclusion we draw is that the full commercial exploitation of shale gas in South Africa seems like 
a distant, if not unlikely, prospect.
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